Question Number	Acceptable Answers	Reject	Mark
1(a)(i)	- In experiments 1 and $2,\left[\mathrm{H}^{+}\right]$ doubles (whilst keeping other concentrations constant) and the rate quadruples / rate increases $\times 4$ - Second order (with respect to H^{+}) - In experiments 1 and $3,\left[\mathrm{Br}^{-}\right.$] doubles and $\left[\mathrm{BrO}_{3}{ }^{-}\right.$] triples (with [H^{+}] constant) - Rate increases by 3×2 / rate increases x $6 /$ rate increases to 5.04×10^{-5} (then to 1.01×10^{-4} stated or implied) - First order with respect to Br^{-} OR - In experiments 2 and $3,\left[\mathrm{Br}^{-}\right]$ doubles and $\left[\mathrm{BrO}_{3}^{-}\right]$triples and [H^{+}] halves - Rate increases by $3 \times 0.25 \times 2$ / rate increases x 1.5 - First order with respect to Br^{-}(1) Penalise OMI SSI ON of Experiment Numbers once only Mark each point independently		5

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (a) (i i)}$	Rate $=\mathrm{k}\left[\mathrm{BrO}_{3}\right]\left[\mathrm{Br}^{-}\right]\left[\mathrm{H}^{+}\right]^{2}$		$\mathbf{1}$
	Mark CQ on (a)(i) Allow "r" or "R" for "rate" in the rate equation. IGNORE If k appears to be in upper case.		

Question Number	Acceptable Answers	Reject	Mark
1(a)(iii)	I GNORE sf except 1 sf THROUGHOUT FI RST, CHECK THE FI NAL ANSWER IF answer $\mathrm{k}=1.49 \times 10^{-2} \mathbf{d m}^{9} \mathbf{m o l}^{-3} \mathbf{s}^{-1}$ award (3) marks $\begin{align*} & \mathrm{k}=\frac{\text { rate }}{\left[\mathrm{BrO}^{-}{ }_{3}\right]\left[\mathrm{Br}^{-}\right]\left[\mathrm{H}^{+}\right]^{2}} \\ &=\frac{1.68 \times 10^{-5}}{0.05 \times 0.25 \times(0.30)^{2}} \\ &=0.014933333 \tag{1}\\ &=0.0149 \\ & \mathbf{d m}^{\mathbf{9}} \mathbf{~ m o l}^{-\mathbf{3}} \mathbf{s}^{-1} / \mathbf{~ m o l}^{-\mathbf{3}} \mathbf{~ d m}^{\mathbf{9}} \mathrm{s}^{-1} \tag{1} \end{align*}$ I GNORE sf except 1 sf Mark CQ from (a)(ii) or, if no rate equation in (a)(ii), then any rate equation stated in (a)(iii) NOTE: IF the rate equation in (a)(ii) is given as Rate $=\mathrm{k}\left[\mathrm{BrO}_{3}^{-}\right]\left[\mathrm{H}^{+}\right]^{2}$ $\begin{equation*} \mathrm{CQ} \mathrm{k}=3.73 \times 10^{-3} \mathrm{dm}^{6} \mathrm{~mol}^{-2} \mathrm{~s}^{-1} \tag{3} \end{equation*}$ scores IF $\left[\mathrm{H}^{+}\right]$is not squared in the correct rate equation: $\mathrm{k}=4.48 \times 10^{-3} \mathrm{dm}^{9} \mathrm{~mol}^{-3} \mathrm{~s}^{-1}$ OR $\begin{equation*} \mathrm{k}=4.48 \times 10^{-3} \mathrm{dm}^{6} \mathrm{~mol}^{-2} \mathrm{~s}^{-1} \text { scores } \tag{2} \end{equation*}$ ALLOW Correct answers derived from the data in the table for Experiment 2 or Experiment 3		3

Question Number	Acceptable Answers	Reject	Mark
1(b)	The number(s) (of particles) in the rate equation / rate-determining step do not match those in the equation for the reaction OR The chance of (simultaneous) collision of 12 particles is unlikely OR The chance of (simultaneous) collision of 4 particles is unlikely OR The chance of (simultaneous) collision of 3 reactants is unlikely ALLOW 'molecules’ / ‘substances’ for 'particles' NOTE ALLOW AS A CQ from (a)(ii) Br^{-}ions not in rate equation / Br^{-}ions not in rate-determining step / Zero order with respect to Br^{-}/ (Only) two reactants in the ratedetermining step / (only) two reactants in the rate-equation/ particles are in the equation (for the reaction) that are not in the rate equation		1

Question Number	Acceptable Answers	Reject	Mark
1(c)	REMEMBER TO SCROLL DOWN BELOW THE SPACE LEFT FOR A SKETCH-GRAPH TO SEE WHAT CANDI DATE HAS WRITTEN ON THE DOTTED LINES - (Calculate) gradient (of tangent) ALLOW 'slope' for 'gradient' - At $\mathrm{t}=0 /$ at the start / at the beginning / when reaction is at its fastest / at the origin Each mark is stand-alone NOTE: Answer may be annotated on a suitable sketch-graph I GNORE any sketch-graph that shows an increase in concentration with time MAX (1) if sketch-graph shows a decrease in the concentration of a reactant / Br_{2}	Answers relating to half-life score (0) overall If sketch-graph or comments suggest that gradient is measured at other than $\mathrm{t}=0$ or at several values of t then max (1)	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (a) (\mathbf { i })}$	$k=\left(1.54 \times 10^{-6}\right) \div(0.1 \times 0.15)$ $\left(=1.0267 \times 10^{-4}\right)$ $=1.03 \times 10^{-4} \mathbf{(1)}$ must be to 3 SF $\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1} \mathbf{(1)}$ Unit mark is stand alone and units can be in any order Correct answer with units but no working (3) marks	1.02×10^{-4}	$\mathbf{3}$

Question Number	Acceptable Answers	Reject	Mark
2(a)(ii)	If correct unrounded answer to (a) (i) stored in calculator then $4.1067 \times 10^{-8}=4.1 \times 10^{-8}(\mathrm{~mol} \mathrm{dm}$ OR $\left.\mathrm{s}^{-1}\right)$ If 1.0267×10^{-4} used then $4.1068 \times 10^{-8}=4.1 \times 10^{-8}\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right)$ OR If 1.03×10^{-4} used then $4.12 \times 10^{-8}=4.1 \times 10^{-8}\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right)$ IGNORE sf except 1 sf IGNORE units even if incorrect TE from (a)(i)	$\mathbf{1}$	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (b) (i)}$	$2\left(^{\text {nd }}\right) /$ second/two/(1 + 1) $=2$ (order)		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (b) (i i)}$	Structure ALLOW structure without wedged bonds Dotted bonds must be shown and OH and Br must be on opposite sides with a C-C or C-H bond between them Charge Charge mark can be awarded for a near miss with a single error in the structure (e.g. one hydrogen atom missing) ALLOW -ve charge shown as $\delta-$ on both OH and Br Brackets not essential ALLOW -ve charge to be anywhere on the structure IGNORE $\delta+$ on carbon atom	$\mathbf{2}$	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (c) (i)}$	3.00×10^{-3}	(1)	
	IGNORE sf for $1 / \mathrm{T}$	-5.60	$\mathbf{2}$
	-5.58		
IGNORE sf except 1sf	(1)		

Question	Acceptable Answers	Reject	Mark
2(c)(ii)	Appropriate scale Plotted points must cover at least half of the graph paper on each axis. Points plotted correctly and straight line drawn through all points $\begin{equation*} \text { Gradient }=-10230 \pm 500 \tag{1} \end{equation*}$ Example $E_{a}=10230 \times 8.31(\mathbf{1)}$ allow TE from incorrect gradient $\begin{equation*} \mathrm{E}_{\mathrm{a}}=(+) 85.0 \mathrm{~kJ}\left(\mathrm{~mol}^{-1}\right) /(+) 85000 \mathrm{~J}\left(\mathrm{~mol}^{-1}\right) \tag{1} \end{equation*}$ 3 sf E_{a} range from 80.9 to $89.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$ ALLOW TE from incorrect gradient IGNORE SF except 1	K^{-1}	5

Question Number	Acceptable Answers	Reject	Mark
3 (a)(i)	These are stand alone marks		2
	First mark:		
	(ensures that) $\left[\mathrm{H}^{+}\right]$and [propanone] (virtually)		
	constant		
	so that the $\left[\mathrm{H}^{+}\right]$and [propanone] do not affect		
	the rate (1)		
	Second mark:		
	the [I_{2} / iodine concentration changes		
	OR		
	so that the overall order (of reaction) is not determined		
	OR		
	otherwise a curve (graph) is obtained		
	NOTE:-		
	"only the $\left[I_{2}\right]$ changes scores (2)		
	OR		
	"only the I_{2} concentration changes" scores (2) BUT		
	"only the iodine changes" scores (1)		

Question Number	Acceptable Answers	Reject	Mark
3 (a)(ii)	First mark: double the concentration of propanone OR change/increase/decrease the concentration of propanone Second mark (mark consequentially): slope/gradient of line doubles ALLOW "rate doubles" OR slope or gradient changes/increases/decreases by same factor ALLOW "rate changes/increases/decreases by same factor" NOTE: may suggest a different procedure:- First mark: monitor/measure [propanone] over time Second mark (mark consequentially): plot [propanone] v. time graph and state that t $1 / 2$ constant		2

Question Number	Acceptable Answers	Reject	Mark
3 (a)(iii)	I_{2} not involved in rate-determining step/ I_{2} not involved in slow(est) step / H^{+}and propanone involved in rate-determining step/ H^{+}and propanone involved in slow(est)step so there must be another step where I_{2} is involved/ so there must be a fast step where I_{2} is involved BUT:- I_{2} not involved until after the rate-determining step/ I_{2} not involved until after the slow(est) step ALLOW H^{+}involved in rate-determining step and is regenerated as it is a catalyst (in another step)	I_{2} involved before ratedetermining/slowest step (0)	2

Question Number	Acceptable Answers	Reject	Mark
3 (b)(i)	$\mathrm{HCO}_{3}{ }^{-}+\mathrm{H}^{+} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$ OR $\mathrm{HCO}_{3}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}$ OR $\mathrm{HCO}_{3}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$ OR $\mathrm{HCO}_{3}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}$ ALLOW: $\mathrm{NaHCO}_{3}+\mathrm{H}^{+} \rightarrow \mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$ OR $\mathrm{Na}^{+}+\mathrm{HCO}_{3}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$ IGNORE any correct or any incorrect state symbols	$\mathrm{NaHCO}_{3}+\mathrm{HCl} \rightarrow$ $\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$ OR any equations with HA	1

Question Number	Acceptable Answers	Reject	Mark
3 (b)(ii)	$\begin{aligned} & \mathrm{CH}_{3} \mathrm{COCH}_{3}+3 \mathrm{I}_{2}+4 \mathrm{NaOH} \\ & \rightarrow \mathrm{CH}_{3}+\mathrm{CH}_{3} \mathrm{COONa}+3 \mathrm{NaI}+3 \mathrm{H}_{2} \mathrm{O} \end{aligned}$ IGNORE any correct or any incorrect state symbols CHI_{3} on RHS of equation remaining species correct balanced equation NOTE: balancing mark is CQ on all species correct Accept correct ionic equation (i.e. Na^{+}omitted) NOTE: If CH_{3} l, can only access second mark above		3

Question Number	Acceptable Answers	Reject	Mark
4 (a)(i)	These are stand alone marks		2
	First mark:		
	(ensures that) [H^{+}] and [propanone] (virtually)		
	constant		
	OR		
	so that the $\left[\mathrm{H}^{+}\right]$and [propanone] do not affect the rate		
	Second mark:		
	the [I_{2}] / iodine concentration changes		
	OR		
	so that the overall order (of reaction) is not determined		
	OR		
	otherwise a curve (graph) is obtained		
	NOTE:-		
	"only the [I_{2} changes scores (2)		
	OR		
	"only the l_{2} concentration changes" scores (2) BUT		
	"only the iodine changes" scores (1)		

Question Number	Acceptable Answers	Reject	Mark
4 (a)(ii)	First mark: double the concentration of propanone OR change/increase/decrease the concentration of propanone Second mark (mark consequentially): slope/gradient of line doubles ALLOW "rate doubles" OR slope or gradient changes/increases/decreases by same factor ALLOW "rate changes/increases/decreases by same factor" NOTE: may suggest a different procedure:- First mark: monitor/measure [propanone] over time Second mark (mark consequentially): plot [propanone] v. time graph and state that t $1 / 2$ constant		2

Question Number	Acceptable Answers	Reject	Mark
4 (a)(iii)	I_{2} not involved in rate-determining step/ I_{2} not involved in slow(est) step / H^{+}and propanone involved in rate-determining step/ H^{+}and propanone involved in slow(est)step so there must be another step where I_{2} is involved/ so there must be a fast step where I_{2} is involved BUT:- I_{2} not involved until after the rate-determining step/ I_{2} not involved until after the slow(est) step ALLOW H^{+}involved in rate-determining step and is regenerated as it is a catalyst (in another step)	I_{2} involved before ratedetermining/slowest step (0)	2

Question Number	Acceptable Answers	Reject	Mark
4 (b)(i)	$\mathrm{HCO}_{3}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$ OR $\mathrm{HCO}_{3}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}$ OR $\mathrm{HCO}_{3}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$ OR $\mathrm{HCO}_{3}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}$ ALLOW: $\mathrm{NaHCO}_{3}+\mathrm{H}^{+} \rightarrow \mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$ OR $\mathrm{Na}^{+}+\mathrm{HCO}_{3}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$ IGNORE any correct or any incorrect state symbols	$\begin{aligned} & \mathrm{NaHCO}_{3}+\mathrm{HCl} \rightarrow \\ & \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \end{aligned}$ OR any equations with HA	1

Question Number	Acceptable Answers	Reject	Mark
4 (b)(ii)	$\begin{aligned} & \mathrm{CH}_{3} \mathrm{COCH}_{3}+3 \mathrm{I}_{2}+4 \mathrm{NaOH} \\ & \rightarrow \mathrm{CH}_{3}+\mathrm{CH}_{3} \mathrm{COONa}+3 \mathrm{NaI}+3 \mathrm{H}_{2} \mathrm{O} \end{aligned}$ IGNORE any correct or any incorrect state symbols CHI_{3} on RHS of equation remaining species correct balanced equation NOTE: balancing mark is CQ on all species correct Accept correct ionic equation (i.e. Na^{+}omitted) NOTE: If $\mathrm{CH}_{3} \mathrm{I}$, can only access second mark above		3

