 In experiments 1 and 2, [H⁺] doubles (whilst keeping other concentrations constant) and the rate quadruples / rate increases x 4 (1) Second order (with respect to H⁺) (1) In experiments 1 and 3, [Br⁻] doubles and [BrO₃⁻] triples (with [H⁺] constant) (1) Rate increases by 3 x 2 / rate increases to 5.04 x 10⁻⁵ (then to 1.01 x 10⁻⁴ stated or implied) (1) First order with respect to Br⁻ (1) OR In experiments 2 and 3, [Br⁻] doubles and [BrO₃⁻] triples (1) 		5
 Rate increases by 3 x 0.25 x 2 / rate increases x 1.5 (1) First order with respect to Br⁻ (1) Penalise OMISSION of Experiment Numbers once only Mark each point independently 		
	 In experiments 1 and 2, [H⁺] doubles (whilst keeping other concentrations constant) and the rate quadruples / rate increases x 4 (1) Second order (with respect to H⁺) (1) In experiments 1 and 3, [Br⁻] doubles and [BrO₃⁻] triples (with [H⁺] constant) (1) Rate increases by 3 x 2 / rate increases x 6 / rate increases to 5.04 x 10⁻⁵ (then to 1.01 x 10⁻⁴ stated or implied) (1) First order with respect to Br⁻ (1) OR In experiments 2 and 3, [Br⁻] doubles and [BrO₃⁻] triples and [H⁺] halves (1) Rate increases by 3 x 0.25 x 2 / rate increases x 1.5 (1) First order with respect to Br⁻ (1) 	 In experiments 1 and 2, [H⁺] doubles (whilst keeping other concentrations constant) and the rate quadruples / rate increases x 4 (1) Second order (with respect to H⁺) (1) In experiments 1 and 3, [Br⁻] doubles and [BrO₃⁻] triples (with [H⁺] constant) Rate increases by 3 x 2 / rate increases x 6 / rate increases to 5.04 x 10⁻⁵ (then to 1.01 x 10⁻⁴ stated or implied) First order with respect to Br⁻ (1) OR In experiments 2 and 3, [Br⁻] doubles and [BrO₃⁻] triples and [H⁺] halves Rate increases by 3 x 0.25 x 2 / rate increases x 1.5 (1) First order with respect to Br⁻ (1) Mate increases by 3 x 0.25 x 2 / rate increases x 1.5 (1) First order with respect to Br⁻ (1) Mark each point independently

Question	Acceptable Answers	Reject	Mark
Number			
1(a)(ii)	Rate = $k [BrO_{3}^{-}] [Br^{-}] [H^{+}]^{2}$		1
	Mark CQ on (a)(i) Allow "r" or "R" for "rate" in the rate equation. IGNORE If <i>k</i> appears to be in upper case.		

Question	Acceptable Answers	Reject	Mark
Number			
1 (a)(iii)	IGNORE sf except 1 sf THROUGHOUT		3
	FIRST, CHECK THE FINAL ANSWER		
	IF answer		
	$k = 1.49 \text{ x } 10^{-2} \text{ dm}^9 \text{ mol}^{-3} \text{ s}^{-1}$		
	award (3) marks		
	$k = \underline{rate}$		
	$[BrO_{3}]$ $[Br^{-}]$ $[H^{+}]^{2}$		
	$= \frac{1.68 \times 10^{-3}}{2.05 \times 10^{-3}}$		
	$0.05 \times 0.25 \times (0.30)^2$ (1)		
	= 0.014933333		
	= 0.0149 (1)		
	am moi s 7 moi am s		
	ICNOPE of except 1 of		
	Mark CO from (a)(ii) or if no rate		
	equation in (a)(ii), then any rate		
	equation stated in (a)(iii)		
	NOTE:		
	IF the rate equation in (a)(ii) is given		
	as		
	Rate = $k [BrO_{3}^{-}] [H^{+}]^{2}$		
	CQ $k = 3.73 \text{ x} 10^{-3} \text{ dm}^6 \text{ mol}^{-2} \text{ s}^{-1}$		
	scores (3)		
	IF [H ⁺] is not squared in the correct		
	$K = 4.48 \times 10^{\circ} \text{ dm}^{\circ} \text{ mol}^{\circ} \text{ s}^{\circ}$		
	VR (4.40 × 10 ⁻³ dm ⁶ mol ⁻² o ⁻¹ occros		
	$K = 4.48 \times 10$ uni moi s scores		
	Correct answers derived from the data		
	in the table for Experiment 2 or		
	Experiment 3		
	ALLOW Correct answers derived from the data in the table for Experiment 2 or Experiment 3		

Question Number	Acceptable Answers	Reject	Mark
1(b)	The number(s) (of particles) in the rate equation / rate-determining step do not match those in the equation for the reaction		1
	OR		
	The chance of (simultaneous) collision of 12 particles is unlikely		
	OR		
	The chance of (simultaneous) collision of 4 particles is unlikely OR		
	The chance of (simultaneous) collision of 3 reactants is unlikely ALLOW		
	'molecules' / 'substances' for 'particles'		
	<u>NOTE</u>		
	ALLOW AS A CQ from (a) (ii) Br ⁻ ions not in rate equation / Br ⁻ ions not in rate-determining step / Zero order with respect to Br ⁻ / (Only) two reactants in the rate- determining step / (only) two reactants in the rate-equation/ particles are in the equation (for the reaction) that are not in the rate equation		

Question Number	Acceptable Answers	Reject	Mark
1(c)	REMEMBER TO SCROLL DOWN BELOW THE SPACE LEFT FOR A SKETCH-GRAPH TO SEE WHAT CANDIDATE HAS WRITTEN ON THE DOTTED LINES		2
	 (Calculate) gradient (of tangent) (1) 	Answers relating to half-life score (0) overall	
	ALLOW 'slope' for 'gradient'		
	 At t = 0 / at the start / at the beginning / when reaction is at its fastest / at the origin (1) 	If sketch-graph or comments suggest that gradient is measured at other than t = 0 or at several values of t then	
	Each mark is stand-alone	max (1)	
	NOTE: Answer may be annotated on a suitable sketch-graph		
	IGNORE any sketch-graph that shows an increase in concentration with time		
	MAX (1) if sketch-graph shows a decrease in the concentration of a reactant / Br ₂		

Question Number	Acceptable Answers	Reject	Mark
2(a)(i)	$k = (1.54 \times 10^{-6}) \div (0.1 \times 0.15) $ (1) (= 1.0267 × 10 ⁻⁴)		ß
	= 1.03×10^{-4} (1) must be to 3 SF	1.02×10^{-4}	
	$dm^3 mol^{-1} s^{-1}$ (1)		
	Unit mark is stand alone and units can be in any order		
	Correct answer with units but no working (3) marks		

Question Number	Acceptable Answers	Reject	Mark
2(a)(ii)	If correct unrounded answer to (a) (i) stored in calculator then 4.1067 x $10^{-8} = 4.1 \times 10^{-8} \pmod{\text{dm}^{-3} \text{s}^{-1}}$		1
	OR		
	If 1.0267 x 10^{-4} used then 4.1068 x $10^{-8} = 4.1 \times 10^{-8}$ (mol dm ⁻³ s ⁻¹)		
	OR		
	If 1.03×10^{-4} used then 4.12 x $10^{-8} = 4.1 \times 10^{-8}$ (mol dm ⁻³ s ⁻¹)		
	IGNORE sf except 1sf		
	IGNORE units even if incorrect TE from (a)(i)		

Question	Acceptable Answers	Reject	Mark
Number			
2(b)(i)	$2(^{nd})/second/two/(1 + 1) = 2 (order)$		1

Question Number	Acceptable Answers	Reject	Mark
2(b)(ii)	$\begin{bmatrix} H & H \\ HO C Br \\ GH_3 \end{bmatrix}^{\Theta}$		2
	Structure(1)ALLOW structure without wedged bondsDotted bonds must be shown and OH and Br mustbe on opposite sides with a C-C or C-H bondbetween them		
	Charge (1) Charge mark can be awarded for a near miss with a single error in the structure (e.g. one hydrogen atom missing)		
	ALLOW -ve charge shown as $\delta-$ on both OH and Br Brackets not essential		
	ALLOW –ve charge to be anywhere on the structure IGNORE δ + on carbon atom		

Question Number	Acceptable Answers		Reject	Mark
2(c)(i)	3.00×10^{-3} (IGNORE sf for 1/T -5.58 (IGNORE sf except 1sf	1) (1)	-5.60	2

Question Number	Acceptable Answers		Reject	Mark
<u>Number</u> 2(c)(ii)	Appropriate scale Plotted points must cover at least half of the grap paper on each axis. Points plotted correctly and straight line drawn (through all points Gradient = -10230 ± 500 Example $E_a = 10230 \times 8.31(1)$ allow TE from incorrect gradient $E_a = (+) 85.0 \text{ kJ}(\text{mol}^{-1})/(+) 85 000 \text{ J} (\text{mol}^{-1})$ 3 sf $E_a \text{ range from 80.9 to 89.2 \text{ kJ mol}^{-1}$	(1) (1) (1)	K ⁻¹	5
	ALLOW TE from incorrect gradient IGNORE SF except 1			

Question Number	Acceptable Answers	Reject	Mark
3 (a)(i)	These are stand alone marks		2
	First mark:		
	(ensures that) [H ⁺] and [propanone] (virtually) constant OR so that the [H ⁺] and [propanone] do not affect the rate (1)		
	Second mark:		
	the $[I_2]$ / iodine concentration changes		
	OR		
	so that the overall order (of reaction) is not determined		
	OR		
	otherwise a curve (graph) is obtained		
	NOTE:-		
	"only the $[I_2]$ changes scores (2) OR "only the L concentration changes" scores (2)		
	BUT		

Question Number	Acceptable Answers	Reject	Mark
3 (a)(ii)	First mark: double the concentration of propanone OR change/increase/decrease the concentration of propanone (1) Second mark (mark consequentially):		2
	slope/gradient of line doubles <i>ALLOW</i> "rate doubles" <i>OR</i> slope or gradient changes/increases/decreases by same factor <i>ALLOW</i> "rate changes/increases/decreases by same factor" (1)		
	NOTE: may suggest a different procedure:-		
	First mark: monitor/measure [propanone] over time (1) Second mark (mark consequentially): plot [propanone] v. time graph and state that t _{1/2} constant (1)		

Acceptable Answers	Reject	Mark
I₂ not involved in rate-determining step/ I₂ not involved in slow(est) step / H ⁺ and propanone involved in rate-determining step/ H ⁺ and propanone involved in slow(est)step (1)	I ₂ involved before rate- determining/slowest step (0)	2
so there must be another step where I_2 is involved/ so there must be a fast step where I_2 is involved (1)		
BUT:-		
I_2 not involved until after the rate-determining step/ I_2 not involved until after the slow(est) step		
(2)		
ALLOW		
H^{+} involved in rate-determining step (1)		
and is regenerated as it is a catalyst (in another step)		
	Acceptable Answers I2 not involved in rate-determining step/ I2 not involved in slow(est) step / H* and propanone involved in rate-determining step/ H* and propanone involved in slow(est)step (1) so there must be another step where I2 is involved/ so there must be a fast step where I2 is involved/ so there must be a fast step where I2 is involved/ full BUT:- I2 not involved until after the rate-determining step/ I2 not involved until after the slow(est) step (2) ALLOW H* involved in rate-determining step/ (1) and is regenerated as it is a catalyst (in another step) (1)	Acceptable Answers Reject I2 not involved in rate-determining step/ I2 involved before rate-determining step/ H* and propanone involved in rate-determining step/ I2 involved before rate-determining step/ H* and propanone involved in slow(est)step (1) so there must be another step where I2 is involved (1) so there must be a fast step where I2 is involved (1) BUT:- I2 not involved until after the rate-determining step/ I2 not involved until after the slow(est) step (2) ALLOW (1) H* involved in rate-determining step/ (1) and is regenerated as it is a catalyst (in another step) (1)

Question Number	Acceptable Answers	Reject	Mark
3 (b)(i)	$HCO_3^- + H^+ \rightarrow H_2O + CO_2$		1
	OR	NaCl + H_2O + CO_2 OR	
	$HCO_3^- + H^+ \rightarrow H_2CO_3$	any equations with HA	
	OR		
	$HCO_3^- + H_3O^+ \rightarrow 2H_2O + CO_2$		
	OR		
	$HCO_3^- + H_3O^+ \rightarrow H_2CO_3 + H_2O$		
	ALLOW:		
	$NaHCO_3 + H^+ \rightarrow Na^+ + H_2O + CO_2$		
	OR		
	$Na^{+} + HCO_{3}^{-} + H^{+} \rightarrow Na^{+} + H_{2}O + CO_{2}$		
	<i>IGNORE</i> any correct or any incorrect state symbols		
Question	Acceptable Answers	Reject	Mark

Question	Acceptable Answers		Reject	Mark
Number				
3 (b)(ii)	CH ₃ COCH ₃ + 3 I ₂ + 4 NaOH			3
	\rightarrow CHI ₃ + CH ₃ COONa + 3 NaI + 3 H ₂ O			
	<i>IGNORE</i> any correct or any incorrect state symbols			
	CHI ₃ on RHS of equation remaining species correct balanced equation	(1) (1) (1)		
	NOTE:			
	balancing mark is CQ on all species correct			
	Accept correct ionic equation (i.e. Na ⁺ omitted)			
	NOTE: If CH ₃ I, can only access second mark above			

Question	Acceptable Answers	Reject	Mark
Number			
4 (a)(i)	These are stand alone marks		2
	First mark:		
	(ensures that) [H ⁺] and [propanone] (virtually) constant OR so that the [H ⁺] and [propanone] do not affect the rate (1)		
	Second mark:		
	the $[I_2]$ / iodine concentration changes		
	OR		
	so that the overall order (of reaction) is not determined		
	OR		
	otherwise a curve (graph) is obtained		
	NOTE:-		
	"only the [I2] changes scores (2)		
	"only the I ₂ concentration changes" scores (2) BUT		
	"only the iodine changes" scores (1)		

Question	Acceptable Answers	Reject	Mark
Number			
4 (a)(ii)	First mark: double the concentration of propanone OR change/increase/decrease the concentration of propanone (1) Second mark (mark consequentially): slope/gradient of line doubles ALLOW "rate doubles" OR slope or gradient changes/increases/decreases by same factor ALLOW "rate changes/increases/decreases by		2
	same factor" (1)		
	NOTE: may suggest a different procedure:-		
	First mark:		
	monitor/measure [propanone] over time (1)		
	Second mark (mark consequentially):		
	plot [propanone] v. time graph and state that		
	$t_{1/2}$ constant (1)		
	(1)		

Question Number	Acceptable Answers	Reject	Mark
4 (a)(iii)	I ₂ not involved in rate-determining step/ I ₂ not involved in slow(est) step / H ⁺ and propanone involved in rate-determining step/ H ⁺ and propanone involved in slow(est)step (1)	I2 involved before rate- determining/slowest step (0)	2
	so there must be another step where I ₂ is involved/ so there must be a fast step where I ₂ is involved (1)		
	BUT:-		
	I_2 not involved until after the rate-determining step/ I_2 not involved until after the slow(est) step		
	(2)		
	ALLOW		
	H^{+} involved in rate-determining step (1)		
	and is regenerated as it is a catalyst (in another step)		
	(1)		

Question Number	Acceptable Answers	Reject	Mark
4 (b)(i)	$HCO_3^- + H^+ \to H_2O + CO_2$	NaHCO₃ + HCl →	1
	OR	NaCl + H ₂ O + CO ₂ OR	
	$HCO_3^- + H^+ \rightarrow H_2CO_3$	any equations with HA	
	OR		
	$HCO_3^- + H_3O^+ \rightarrow 2H_2O + CO_2$		
	OR		
	$HCO_3^- + H_3O^+ \rightarrow H_2CO_3 + H_2O$		
	ALLOW:		
	$NaHCO_3 + H^+ \rightarrow Na^+ + H_2O + CO_2$		
	OR		
	$Na^{+} + HCO_{3}^{-} + H^{+} \rightarrow Na^{+} + H_{2}O + CO_{2}$		
	<i>IGNORE</i> any correct or any incorrect state symbols		

Question Number	Acceptable Answers		Reject	Mark
4 (b)(ii)	CH ₃ COCH ₃ + 3 I ₂ + 4 NaOH			3
	\rightarrow CHI ₃ + CH ₃ COONa + 3 NaI + 3 H ₂ O			
	<i>IGNORE</i> any correct or any incorrect state symbols			
	CHI₃ on RHS of equation	(1)		
	remaining species correct balanced equation	(1) (1)		
	NOTE:			
	balancing mark is CQ on all species correct			
	Accept correct ionic equation (i.e. Na ⁺ omitted)			
	NOTE: If CH ₃ I, can only access second mark above			